FAIR Principles
Datagrok's mission is to connect data, algorithms, models, analysis, and visualizations all together.
From go-fair.org: In 2016, the FAIR Guiding Principles for scientific data management and stewardship were published in Scientific Data. The authors intended to provide guidelines to improve the findability, accessibility, interoperability, and reuse of digital assets. The principles emphasize machine-actionability (i.e., the capacity of computational systems to find, access, interoperate, and reuse data with none or minimal human intervention) because humans increasingly rely on computational support to deal with data as a result of the increase in volume, complexity, and creation speed of data.
Findable
The first step in (re)using data is to find them. Metadata and data should be easy to find for both humans and computers. Machine-readable metadata are essential for automatic discovery of datasets and services, so this is an essential component of the FAIRification process.
F1. (Meta)data are assigned a globally unique and persistent identifier
F2. Data are described with rich metadata (defined by r1 below)
F3. Metadata clearly and explicitly include the identifier of the data they describe
F4. (Meta)data are registered or indexed in a searchable resource
Accessible
A1. (Meta)data are retrievable by their identifier using a standardized communications protocol
A1.1 The protocol is open, free, and universally implementable
A1.2 The protocol is open, free, and universally implementable
Interoperable
The data usually need to be integrated with other data. In addition, the data need to interoperate with applications or workflows for analysis, storage, and processing.
I1. (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation
I2. (Meta)data use vocabularies that follow fair principles
I3. (Meta)data include qualified references to other (meta)data
Reusable
The ultimate goal of FAIR is to optimize the reuse of data. To achieve this, metadata and data should be well-described so that they can be replicated and/or combined in different settings.
R1. Meta(data) are richly described with a plurality of accurate and relevant attributes
R1.1. (Meta)data are released with a clear and accessible data usage license
R1.2. (Meta)data are associated with detailed provenance
R1.3. (Meta)data meet domain-relevant community standards
See also: